Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(4): 1269-1284, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36648525

RESUMO

The oleaginous yeast Lipomyces starkeyi has considerable potential in industrial application, since it can accumulate a large amount of triacylglycerol (TAG), which is produced from sugars under nitrogen limitation condition. However, the regulation of lipogenesis in L. starkeyi has not been investigated in depth. In this study, we compared the genome sequences of wild-type and mutants with increased TAG productivity, and identified a regulatory protein, LsSpt23p, which contributes to the regulation of TAG synthesis in L. starkeyi. L. starkeyi mutants overexpressing LsSPT23 had increased TAG productivity compared with the wild-type strain. Quantitative real-time PCR analysis showed that LsSpt23p upregulated the expression of GPD1, which encodes glycerol 3-phosphate dehydrogenase; the Kennedy pathway genes SCT1, SLC1, PAH1, DGA1, and DGA2; the citrate-mediated acyl-CoA synthesis pathway-related genes ACL1, ACL2, ACC1, FAS1, and FAS2; and OLE1, which encodes ∆9 fatty acid desaturase. Chromatin immunoprecipitation-quantitative PCR assays indicated that LsSpt23p acts as a direct regulator of SLC1 and PAH1, all the citrate-mediated acyl-CoA synthesis pathway-related genes, and OLE1. These results indicate that LsSpt23p regulates TAG synthesis. Phosphatidic acid is a common substrate of phosphatidic acid phosphohydrolase, which is used for TAG synthesis, and phosphatidate cytidylyltransferase 1 for phospholipid synthesis in the Kennedy pathway. LsSpt23p directly regulated PAH1 but did not affect the expression of CDS1, suggesting that the preferred route of carbon is the Pah1p-mediated TAG synthesis pathway under nitrogen limitation condition. The present study contributes to understanding the regulation of TAG synthesis, and will be valuable in future improvement of TAG productivity in oleaginous yeasts. KEY POINTS: LsSpt23p was identified as a positive regulator of TAG biosynthesis LsSPT23 overexpression enhanced TAG biosynthesis gene expression and TAG production LsSPT23M1108T overexpression mutant showed fivefold higher TAG production than control.


Assuntos
Lipogênese , Leveduras , Lipogênese/genética , Triglicerídeos , Citratos , Nitrogênio
2.
Appl Microbiol Biotechnol ; 106(12): 4539-4551, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35723691

RESUMO

Metagenomic MeBglD2 is a glycoside hydrolase family 1 (GH1) ß-glycosidase that has ß-glucosidase, ß-fucosidase, and ß-galactosidase activities, and is highly activated in the presence of monosaccharides and disaccharides. The ß-glucosidase activity of MeBglD2 increases in a cellobiose concentration-dependent manner and is not inhibited by a high concentration of D-glucose or cellobiose. Previously, we solved the crystal structure of MeBglD2 and designed a thermostable mutant; however, the mechanism of substrate recognition of MeBglD2 remains poorly understood. In this paper, we report the X-ray crystal structures of MeBglD2 complexed with various saccharides, such as D-glucose, D-xylose, cellobiose, and maltose. The results showed that subsite - 1 of MeBglD2, which contained two catalytic glutamate residues (a nucleophilic Glu356 and an acid/base Glu170) was common to other GH1 enzymes, but the positive subsites (+ 1 and + 2) had different binding modes depending on the type of sugar. Three residues (Glu183, Asn227, and Asn229), located at the positive subsites of MeBglD2, were involved in substrate specificity toward cellobiose and/or chromogenic substrates in the presence of additive sugars. The docking simulation of MeBglD2-cellobiose indicated that Asn229 and Trp329 play important roles in the recognition of + 1 D-glucose in cellobiose. Our findings provide insights into the unique substrate recognition mechanism of GH1, which can incorporate a variety of saccharides into its positive subsites. KEY POINTS: • Metagenomic glycosidase, MeBglD2, recognizes various saccharides • Structures of metagenomic MeBglD2 complexed with various saccharides are determined • MeBglD2 has a unique substrate recognition mechanism at the positive subsites.


Assuntos
Celobiose , Metagenoma , Celobiose/metabolismo , Cristalografia por Raios X , Glucose/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/metabolismo , beta-Glucosidase/metabolismo
3.
FEBS Lett ; 596(15): 1944-1954, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717558

RESUMO

Aspergillus oryzae isoprimeverose-producing oligoxyloglucan hydrolase (IpeA) releases isoprimeverose units (α-d-xylopyranosyl-(1→6)-d-glucose) from the non-reducing end of xyloglucan oligosaccharides and belongs to glycoside hydrolase family 3. In this paper, we report the X-ray crystal structure of the IpeA complexed with a xyloglucan oligosaccharide, (XXXG: Glc4 Xyl3 ). Trp515 of IpeA plays a critical role in XXXG recognition at positive subsites. In addition, docking simulation of IpeA-XXXG suggested that two Tyr residues (Tyr268 and Tyr445) are involved in the catalytic reaction mechanism of IpeA. Tyr268 plays an important role in product turnover, whereas Tyr445 stabilizes the acid/base Glu524 residue, which serves as a proton donor. Our findings indicate that the substrate recognition machinery of IpeA is specifically adapted to xyloglucan oligosaccharides.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Dissacarídeos , Glicosídeo Hidrolases/química , Oligossacarídeos , Especificidade por Substrato
4.
Biosci Biotechnol Biochem ; 86(7): 855-864, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35441671

RESUMO

MeXyl31, a member of glycoside hydrolase family 31 (GH31), is the α-xylosidase isolated from a soil metagenomic library. The enzyme degrades α-xylosyl substrate such as isoprimeverose, α-d-xylopyranosyl-(1→6)-glucopyranose. The crystal structure of MeXyl31 was determined at 1.80 Å resolution. MeXyl31 forms the tetrameric state. The complexed structure with a xylose in the -1 subsite (α-xylose binding site) shows that the enzyme strictly recognizes α-xylose. Structural comparison between MeXyl31 and its homologue, Aspergillus niger α-xylosidase in GH31, gave insights into the positive subsite of MeXyl31. First, in the tetrameric enzyme, two monomers (a catalytic monomer and the adjacent monomer), are involved in substrate recognition. Second, the adjacent monomer composes a part of positive subsites in MeXyl31. Docking simulation and site-directed mutagenesis suggested that the Arg100 from the adjacent monomer is partially involved in the recognizing of a glucopyranose of isoprimeverose.


Assuntos
Glicosídeo Hidrolases , Xilosidases , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Metagenoma , Solo , Especificidade por Substrato , Xilose , Xilosidases/metabolismo
5.
Appl Microbiol Biotechnol ; 106(2): 675-687, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34971412

RESUMO

α-Xylosidases release the α-D-xylopyranosyl side chain from di- and oligosaccharides derived from xyloglucans and are involved in xyloglucan degradation. In this study, an extracellular α-xylosidase, named AxyB, is identified and characterized in Aspergillus oryzae. AxyB belongs to the glycoside hydrolase family 31 and releases D-xylose from isoprimeverose (α-D-xylopyranosyl-(1 → 6)-D-glucopyranose) and xyloglucan oligosaccharides. In the hydrolysis of xyloglucan oligosaccharides (XLLG, Glc4Xyl3Gal2 nonasaccharide; XLXG/XXLG, Glc4Xyl3Gal1 octasaccharide; and XXXG, Glc4Xyl3 heptasaccharide), AxyB releases one molecule of the xylopyranosyl side chain attached to the non-reducing end of the ß-1,4-glucan main chain of these xyloglucan oligosaccharides to yield GLLG (Glc4Xyl2Gal2), GLXG/GXLG (Glc4Xyl2Gal1), and GXXG (Glc4Xyl2). A. oryzae has both extracellular and intracellular α-xylosidase, suggesting that xyloglucan oligosaccharides are degraded by a combination of isoprimeverose-producing oligoxyloglucan hydrolase and intracellular α-xylosidase and a combination of extracellular α-xylosidase and ß-glucosidase(s) in A. oryzae. KEY POINTS: • An extracellular α-xylosidase, AxyB, is identified in Aspergillus oryzae. • AxyB releases the xylopyranosyl side chain from xyloglucan oligosaccharides. • Different sets of glycosidases degrade xyloglucan oligosaccharides in A. oryzae.


Assuntos
Aspergillus oryzae , Xilosidases , Aspergillus oryzae/metabolismo , Glucanos , Oligossacarídeos , Especificidade por Substrato , Xilanos , Xilosidases/genética , Xilosidases/metabolismo
6.
Synth Biol (Oxf) ; 6(1): ysab012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712837

RESUMO

Lutein is an industrially important carotenoid pigment, which is essential for photoprotection and photosynthesis in plants. Lutein is crucial for maintaining human health due to its protective ability from ocular diseases. However, its pathway engineering research has scarcely been performed for microbial production using heterologous hosts, such as Escherichia coli, since the engineering of multiple genes is required. These genes, which include tricky key carotenoid biosynthesis genes typically derived from plants, encode two sorts of cyclases (lycopene ε- and ß-cyclase) and cytochrome P450 CYP97C. In this study, upstream genes effective for the increase in carotenoid amounts, such as isopentenyl diphosphate isomerase (IDI) gene, were integrated into the E. coli JM101 (DE3) genome. The most efficient set of the key genes (MpLCYe, MpLCYb and MpCYP97C) was selected from among the corresponding genes derived from various plant (or bacterial) species using E. coli that had accumulated carotenoid substrates. Furthermore, to optimize the production of lutein in E. coli, we introduced several sorts of plasmids that contained some of the multiple genes into the genome-inserted strain and compared lutein productivity. Finally, we achieved 11 mg/l as lutein yield using a mini jar. Here, the high-yield production of lutein was successfully performed using E. coli through approaches of pathway engineering. The findings obtained here should be a base reference for substantial lutein production with microorganisms in the future.

7.
Appl Microbiol Biotechnol ; 105(13): 5433-5447, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34181032

RESUMO

We have constructed an Escherichia coli-based platform producing (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids (BIAs), using up to 14 genes. (S)-reticuline was produced from a simple carbon source such as glucose and glycerol via L-DOPA, which is synthesized by hydroxylation of L-tyrosine, one of the rate-limiting steps of the reaction. There are three kinds of enzymes catalyzing tyrosine hydroxylation: tyrosinase (TYR), tyrosine hydroxylase (TH), and 4-hydroxyphenylacetate 3-monooxygenase (HpaBC). Here, to further improve (S)-reticuline production, we chose eight from these three kinds of tyrosine hydroxylation enzymes (two TYRs, four THs, and two HpaBCs) derived from various organisms, and examined which enzyme was optimal for (S)-reticuline production in E. coli. TH from Drosophila melanogaster was the most suitable for (S)-reticuline production under the experimental conditions tested. We improved the productivity by genome integration of a gene set for L-tyrosine overproduction, introducing the regeneration pathway of BH4, a cofactor of TH, and methionine addition to enhance the S-adenosylmethionine supply. As a result, the yield of (S)-reticuline reached up to 384 µM from glucose in laboratory-scale shake flask. Furthermore, we found three inconsistent phenomena: an inhibitory effect due to additional gene expression, conflicts among the experimental conditions, and interference of an upstream enzyme from an additional downstream enzyme. Based on these results, we discuss future perspectives and challenges of integrating multiple enzyme genes for material production using microbes. Graphical abstract The optimal tyrosine hydroxylation enzyme for (S)-reticuline production in Escherichia coli KEY POINTS: • There are three types of enzymes catalyzing tyrosine hydroxylation reaction: tyrosinase, tyrosine hydroxylase, and 4-hydroxyphenylacetate 3-monooxygenase. • Tyrosine hydroxylase from Drosophila melanogaster exhibited the highest activity and was suitable for (S)-reticuline production in E. coli. • New insights were provided on constructing an alkaloid production system with multi-step reactions in E. coli.


Assuntos
Benzilisoquinolinas , Escherichia coli , Animais , Drosophila melanogaster , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxilação , Tirosina/metabolismo
8.
J Agric Food Chem ; 69(17): 5076-5085, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890772

RESUMO

Capsanthin, a characteristic red carotenoid found in the fruits of red pepper (Capsicum annuum), is widely consumed as a food and a functional coloring additive. An enzyme catalyzing capsanthin synthesis was identified as capsanthin/capsorubin synthase (CCS) in the 1990s, but no microbial production of capsanthin has been reported. We report here the first successful attempt to biosynthesize capsanthin in Escherichia coli by carotenoid-pathway engineering. Our initial attempt to coexpress eight enzyme genes required for capsanthin biosynthesis did not detect the desired product. The dual activity of CCS as a lycopene ß-cyclase as well as a capsanthin/capsorubin synthase likely complicated the task. We demonstrated that a particularly high expression level of the CCS gene and the minimization of byproducts by regulating the seven upstream carotenogenic genes were crucial for capsanthin formation in E. coli. Our results provide a platform for further study of CCS activity and capsanthin production in microorganisms.


Assuntos
Capsicum , Capsicum/genética , Escherichia coli/genética , Proteínas de Plantas/genética , Xantofilas
9.
Appl Microbiol Biotechnol ; 105(7): 2701-2711, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33760931

RESUMO

Aspergillus species are closely associated with humanity through fermentation, infectious disease, and mycotoxin contamination of food. Members of this genus produce various enzymes to degrade plant polysaccharides, including starch, cellulose, xylan, and xyloglucan. This review focus on the machinery of the xyloglucan degradation using glycoside hydrolases, such as xyloglucanases, isoprimeverose-producing oligoxyloglucan hydrolases, and α-xylosidases, in Aspergillus species. Some xyloglucan degradation-related glycoside hydrolases are well conserved in this genus; however, other enzymes are not. Cooperative actions of these glycoside hydrolases are crucial for xyloglucan degradation in Aspergillus species. KEY POINTS: •Xyloglucan degradation-related enzymes of Aspergillus species are reviewed. •Each Aspergillus species possesses a different set of glycoside hydrolases. •The machinery of xyloglucan degradation of A. oryzae is overviewed.


Assuntos
Glucanos , Xilanos , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
10.
J Biosci Bioeng ; 131(6): 613-621, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33582014

RESUMO

The oleaginous yeast Lipomyces starkeyi is an intriguing lipid producer that can produce triacylglycerol (TAG), a feedstock for biodiesel production. We previously reported that the L. starkeyi mutant E15 with high levels of TAG production compared with the wild-type was efficiently obtained using Percoll density gradient centrifugation. However, considering its use for biodiesel production, it is necessary to further improve the lipid productivity of the mutant. In this study, we aimed to obtain mutants with better lipid productivity than E15, evaluate its lipid productivity, and analyze lipid synthesis-related gene expression in the wild-type and mutant strains. The mutants E15-11, E15-15, and E15-25 exhibiting higher lipid productivity than E15 were efficiently isolated from cells exposed to ultraviolet light using Percoll density gradient centrifugation. They exhibited approximately 4.5-fold higher lipid productivity than the wild-type on day 3. The obtained mutants did not exhibit significantly different fatty acid profiles than the wild-type and E15 mutant strains. E15-11, E15-15, and E15-25 exhibited higher expression of acyl-CoA synthesis- and Kennedy pathway-related genes than the wild-type and E15 mutant strains. Activation of the pentose phosphate pathway, which supplies NADPH, was also observed. These results suggested that the increased expression of acyl-CoA synthesis- and Kennedy pathway-related genes plays a vital role in lipid productivity in the oleaginous yeast L. starkeyi.


Assuntos
Lipídeos/biossíntese , Lipomyces , Raios Ultravioleta , Biocombustíveis , Ácidos Graxos/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos da radiação , Lipídeos/efeitos da radiação , Lipomyces/genética , Lipomyces/isolamento & purificação , Lipomyces/metabolismo , Lipomyces/efeitos da radiação , Engenharia Metabólica , Organismos Geneticamente Modificados , Via de Pentose Fosfato/genética , Via de Pentose Fosfato/efeitos da radiação , Triglicerídeos/metabolismo , Leveduras/genética , Leveduras/metabolismo , Leveduras/efeitos da radiação
11.
Appl Microbiol Biotechnol ; 104(20): 8761-8773, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32910269

RESUMO

Aspergillus oryzae produces glycoside hydrolases to degrade xyloglucan. We identified and characterized two xyloglucan-specific endo-1,4-glucanases (xyloglucanases) named Xeg12A and Xeg5A. Based on their amino acid sequences, Xeg12A and Xeg5A were classified into glycoside hydrolase families GH12 and GH5, respectively. Xeg12A degrades tamarind seed xyloglucan polysaccharide into xyloglucan oligosaccharides containing four glucopyranosyl residues as main chains, including heptasaccharides (XXXG: Glc4Xyl3), octasaccharides (XXLG and XLXG: Glc4Xyl3Gal1), and nonasaccharides (XLLG: Glc4Xyl3Gal2). By contrast, Xeg5A produces various xyloglucan oligosaccharides from xyloglucan. Xeg5A hydrolyzes xyloglucan into not only XXXG, XXLG/XLXG, and XLLG but also disaccharides (isoprimeverose: Glc1Xyl1), tetrasaccharides (XX: Glc2Xyl2 and LG: Glc2Xyl1Gal1), and so on. Xeg12A is a typical endo-dissociative-type xyloglucanase that repeats hydrolysis and desorption from xyloglucan. Conversely, Xeg5A acts as an endo-processive-type xyloglucanase that hydrolyzes xyloglucan progressively without desorption. These results indicate that although both Xeg12A and Xeg5A contribute to the degradation of xyloglucan, they have different modes of activity toward xyloglucan, and the hydrolysis machinery of Xeg5A is unique compared with that of other known GH5 enzymes. KEY POINTS: • We identified two xyloglucanases, Xeg12A and Xeg5A, in A. oryzae. • Modes of activity and regiospecificities of Xeg12A and Xeg5A were clearly different. • Xeg5A is a unique xyloglucanase that produces low-molecular-weight oligosaccharides.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/metabolismo , Glucanos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Especificidade por Substrato , Xilanos
12.
J Biosci Bioeng ; 130(6): 604-609, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32847739

RESUMO

Fatty acid desaturases, especially Δ12 fatty acid desaturases, are key enzymes for the production of unsaturated fatty acids in oleaginous yeasts. In this study, we identified and characterized a gene encoding Δ12 fatty acid desaturase of Pseudozyma antarctica named PaFAD2. Almost all oleic acid (C18:1) was converted to linoleic acid by the heterologous expression of the PaFAD2 gene in Saccharomyces cerevisiae and Lipomyces starkeyi oleaginous yeast. Notably, PaFad2 converted not only oleic acid to linoleic acid, but also palmitoleic acid (C16:1) to 9,12-hexadecadienoic acid (C16:2). These results indicated that the PaFAD2 gene was very useful for the production of polyunsaturated fatty acids in yeast, including oleaginous yeast.


Assuntos
Basidiomycota/enzimologia , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Dessaturases/genética , Expressão Gênica
13.
Appl Microbiol Biotechnol ; 104(14): 6141-6148, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32458138

RESUMO

The oleaginous yeast Lipomyces starkeyi is an excellent sustainable lipid producer, which can convert industrial wastes into lipids and accumulate triacylglycerols (TAG) by > 70% of its dry cell weight. Recent studies using omics technologies applied in L. starkeyi have aided in obtaining greater understanding of the important mechanisms of lipid metabolism in L. starkeyi. Therefore, the development of genetic engineering tools for L. starkeyi has led to accelerated efforts for a highly efficient production of lipids.This review focuses on the aspects of TAG and fatty acid synthesis pathways in L. starkeyi. We also present a quite effective strategy to obtain L. starkeyi mutants accumulating a larger amount of lipids and having a higher lipid production rate than the wild-type strain. The analysis of these mutants exhibiting high lipid production has led to the identification of important genes for achieving highly effective lipid production and thus advanced improvement in lipid production. Herein, our aim was to provide useful information to advance the development of L. starkeyi as a cost-effective TAG feedstock.Key Points•Oleaginous yeast Lipomyces starkeyi is an excellent sustainable lipid producer.•Efficient isolation of lipid-enriched L. starkeyi mutants depends on the low density of lipids.•Increased acyl-CoA synthesis pathway is important for improving lipid productivity.


Assuntos
Metabolismo dos Lipídeos , Lipomyces/metabolismo , Vias Biossintéticas , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Expressão Gênica , Engenharia Genética , Metabolismo dos Lipídeos/genética , Lipomyces/enzimologia , Lipomyces/genética , Mutação , Triglicerídeos/metabolismo
14.
Appl Microbiol Biotechnol ; 104(6): 2537-2544, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32025762

RESUMO

The oleaginous yeast Lipomyces starkeyi is a potential cost-effective source for the production of microbial lipids. Fatty acid elongases have vital roles in the syntheses of long-chain fatty acids. In this study, two genes encoding fatty acid elongases of L. starkeyi, LsELO1, and LsELO2 were identified and characterized. Heterologous expression of these genes in Saccharomyces cerevisiae revealed that LsElo1 is involved in the production of saturated long-chain fatty acids with 24 carbon atoms (C24:0) and that LsElo2 is involved in the conversion of C16 fatty acids to C18 fatty acids. In addition, both LsElo1 and LsElo2 were able to elongate polyunsaturated fatty acids. LsElo1 elongated linoleic acid (C18:2) to eicosadienoic acid (C20:2), and LsElo2 elongated α-linolenic acid (C18:3) to eicosatrienoic acid (C20:3). Overexpression of LsElo2 in L. starkeyi caused a reduction in C16 fatty acids, such as palmitic and palmitoleic acids, and an accumulation of C18 fatty acids such as oleic and linoleic acids. Our findings have the potential to contribute to the remodeling of fatty acid composition and the production of polyunsaturated long-chain fatty acids in oleaginous yeasts.


Assuntos
Elongases de Ácidos Graxos/metabolismo , Lipomyces/enzimologia , Lipomyces/genética , Ácidos Eicosanoicos/análise , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/isolamento & purificação , Ácidos Graxos/biossíntese , Ácido Linoleico/análise , Ácido Oleico/análise , Saccharomyces cerevisiae/genética
15.
Appl Microbiol Biotechnol ; 104(1): 201-210, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31781819

RESUMO

Aspergillus oryzae produces hydrolases involved in xyloglucan degradation and induces the expression of genes encoding xyloglucan oligosaccharide hydrolases in the presence of xyloglucan oligosaccharides. A gene encoding α-xylosidase (termed AxyA), which is induced in the presence of xyloglucan oligosaccharides, is identified and expressed in Pichia pastoris. AxyA is a member of the glycoside hydrolase family 31 (GH31). AxyA hydrolyzes isoprimeverose (α-D-xylopyranosyl-(1→6)-D-glucopyranose) into D-xylose and D-glucose and shows hydrolytic activity with other xyloglucan oligosaccharides such as XXXG (heptasaccharide, Glc4Xyl3) and XLLG (nonasaccharide, Glc4Xyl3Gal2). Isoprimeverose is a preferred AxyA substrate over other xyloglucan oligosaccharides. In the hydrolysis of XXXG, AxyA releases one molecule of D-xylose from one molecule of XXXG to yield GXXG (hexasaccharide, Glc4Xyl2). AxyA does not contain a signal peptide for secretion and remains within the cell. The intracellular localization of AxyA may help determine the order of hydrolases acting on xyloglucan oligosaccharides.


Assuntos
Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Glucanos/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Xilosidases/metabolismo , Dissacarídeos/metabolismo , Hidrólise , Oligossacarídeos/metabolismo , Pichia/genética , Especificidade por Substrato , Xilosidases/isolamento & purificação
16.
J Microbiol Methods ; 169: 105816, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31881286

RESUMO

Microbial lipids produced by oleaginous microorganisms as raw materials for the production of oleochemicals and biodiesel are sustainable while avoiding competition with food products. The oleaginous yeast Lipomyces starkeyi is an excellent lipid producer with a great industrial potential that is suitable as a valuable host to improve lipid production through genetic engineering modifications. However, genetic tools, including effective transformation methods, for L. starkeyi are insufficient for improvement of lipid production and analysis of lipid production mechanisms. We previously developed a polyethylene glycol (PEG)-mediated spheroplast transformation method that significantly improved the homologous recombination efficiency of L. starkeyi strain ∆lslig4. Although other transformation methods, including lithium acetate (LiAc)-mediated transformation and Agrobacterium tumefaciens-mediated transformation, have been reported, a more efficient and convenient transformation method for L. starkeyi is desired. In this study, we developed a novel electroporation transformation method that was first applied for integration of drug-resistance gene markers into the genome of L. starkeyi strain ∆lslig4 at the 18S ribosomal DNA locus of a multiple-copy gene, which yielded approximately 60 transformants/µg of DNA. Optimization of five parameters (i.e., cell growth phase, cell density, osmotic stabilizers, pretreatment agents, and electric conditions) enhanced the efficiency of transformation to approximately 1.5 × 104 transformants/µg of DNA. As compared with those of LiAc-mediated transformation and PEG-mediated spheroplast transformation, the efficiency of the proposed transformation method was increased by about 111- and 7-fold, respectively. Additionally, the transformation efficiency of our proposed electroporation method targeting a single-copy gene locus yielded 273 transformants/µg of DNA. To our knowledge, this is the first report of a successful electroporation method to accelerate analysis of lipid production by L. starkeyi.


Assuntos
Eletroporação/métodos , Lipomyces/genética , Transformação Genética/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Genoma Fúngico/genética , Lipídeos/biossíntese , Lipomyces/metabolismo
17.
Appl Microbiol Biotechnol ; 103(23-24): 9393-9399, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31673744

RESUMO

Carotenoids are naturally synthesized in some species of bacteria, archaea, and fungi (including yeasts) as well as all photosynthetic organisms. Escherichia coli has been the most popular bacterial host for the heterologous production of a variety of carotenoids, including even xanthophylls unique to photosynthetic eukaryotes such as lutein, antheraxanthin, and violaxanthin. However, conversion efficiency of these epoxy-xanthophylls (antheraxanthin and violaxanthin) from zeaxanthin remained substantially low. We here examined several factors affecting their productivity in E. coli. Two sorts of plasmids were introduced into the bacterial host, i.e., a plasmid to produce zeaxanthin due to the presence of the Pantoea ananatis crtE, crtB, crtI, crtY, and crtZ genes in addition to the Haematococcus pluvialis IDI gene, and one containing each of zeaxanthin epoxidase (ZEP) genes originated from nine photosynthetic eukaryotes. It was consequently found that paprika (Capsicum annuum) ZEP (CaZEP) showed the highest conversion activity. Next, using the CaZEP gene, we performed optimization experiments in relation to E. coli strains as the production hosts, expression vectors, and ribosome-binding site (RBS) sequences. As a result, the highest productivity of violaxanthin (231 µg/g dry weight) was observed, when the pUC18 vector was used with CaZEP preceded by a RBS sequence of score 5000 in strain JM101(DE3).


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Genes Bacterianos , Genes de Plantas , Microbiologia Industrial , Redes e Vias Metabólicas , Plasmídeos/genética , Xantofilas/metabolismo
18.
Microbiol Resour Announc ; 8(24)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196916

RESUMO

We report the draft genome sequence of Monascus purpureus GB-01, an industrial strain used as a food colorant. De novo assembly of long reads resulted in 121 chromosomal contigs and 1 mitochondrial contig, and sequencing errors were corrected by paired-end short reads. This genome sequence will provide useful information for azaphilone pigments and mycotoxin citrinin biosynthesis.

19.
FEBS J ; 286(16): 3182-3193, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980597

RESUMO

The galactosylation of xyloglucan blocks many of the enzymatic processes targeting this oligosaccharide. We found that the expression of a gene encoding Aspergillus oryzae ß-galactosidase (LacA) is induced in the presence of xyloglucan oligosaccharides. With detailed analyses of the substrate specificity of purified recombinant LacA, we show that LacA cleaves galactopyranosyl residues from xyloglucan oligosaccharides, but not from xyloglucan polysaccharide, and plays a vital role in xyloglucan degradation. LacA acts cooperatively with the isoprimeverose-producing oligoxyloglucan hydrolase IpeA to hydrolyze xyloglucan oligosaccharides. Galactosylation of the xylopyranosyl side chain at the nonreducing end of oligoxyloglucan saccharides completely abolishes IpeA activity while LacA efficiently removes the galactopyranosyl residue. Conversely, an isoprimeverose unit at the nonreducing end of the main chain of xyloglucan oligosaccharides blocks LacA activity, while IpeA can still remove the isoprimeverose moiety. This is the first study reporting the cooperative action of ß-galactosidase and isoprimeverose-producing oligoxyloglucan hydrolase on xyloglucan oligosaccharide degradation. Our findings shed light on the true role of LacA and the enzymatic coordination between ß-galactosidase and other hydrolases on xyloglucan degradation.


Assuntos
Aspergillus oryzae/genética , Dissacarídeos/genética , Glucanos/metabolismo , Xilanos/metabolismo , beta-Galactosidase/genética , Sequência de Aminoácidos/genética , Aspergillus oryzae/enzimologia , Metabolismo dos Carboidratos/genética , Dissacarídeos/química , Regulação Enzimológica da Expressão Gênica , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Hidrólise , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Especificidade por Substrato , beta-Galactosidase/química
20.
FEBS Open Bio ; 9(1): 92-100, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30652077

RESUMO

Xyloglucan is one of the major polysaccharides found in the plant cell wall and seeds. Owing to its complex branched structure, several different hydrolases are required to degrade it. Isoprimeverose-producing enzymes (IPase) are unique among the glycoside hydrolase 3 family in that they recognize and release a disaccharide from the nonreducing end of xyloglucan oligosaccharides. Only two IPases have been previously isolated and characterized. A novel IPase from Phaeoacremonium minimum (PmIPase) was expressed and characterized. The xylopyranosyl residue at the nonreducing end of xyloglucan oligosaccharides was essential for hydrolytic activity, and PmIPase was unable to hydrolyze cellobiose into d-glucose. PmIPase had a Km for xyloglucan oligosaccharide substrate that was much lower than that of the reported IPase isolated from Aspergillus oryzae. This indicates that PmIPase was able to produce isoprimeverose efficiently from low concentrations of xyloglucan oligosaccharides. PmIPase also exhibited transglycosylation activity and was able to transfer isoprimeverose units to its substrates.


Assuntos
Ascomicetos/enzimologia , Dissacarídeos/biossíntese , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/metabolismo , Xilanos/metabolismo , Sequência de Aminoácidos , Dissacarídeos/química , Glucanos/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Oligossacarídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Xilanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA